CO₂-Kältekreislauf für PKW-Klimatisierung mit innerem Wärmetauscher

Einleitung

Um die Fragestellungen über die thermodynamischen Eigenschaften und die Anwendung von CO₂ in den Komponenten einer PKW-Klimaanlage aufgreifen zu können, wurde aufbauend auf den Kenntnissen über die Entrostung und Beschlagsentfernung von PKW Frontscheiben in einer Klimakammer, ein Komponentenprüfstand als CO₂ Kältemaschinenkreislauf zur PKW Klimatisierung aufgebaut. Die Messergebnisse aus den umfangreichen Untersuchungen mit drei unterschiedlichen IHX-Bauformen wurden u.a. als Grundlage für ein Simulations- und Auslegungsprogramm verwendet. Damit kann die optimierte Länge auf ein Maximum des COP im häufigsten Anwendungsfall ausgelegt werden, wobei für eine begrenzte Länge des jeweiligen IHX im Idle-Test die erforderliche Kälteleistung erreicht wird. Bei genauem Kenntnis der äußeren Einsatzbedingungen kann die Länge des IHX auch auf ein Maximum des COP für die Jahresnutzung ausgelegt werden.

CO₂-Komponentenprüfstand

CO₂ refrigeration cycle for mobile air conditioning with internal heat exchanger

Keywords: CO₂, R744, refrigeration cycle, mobile air conditioning, Internal Heat Exchanger, IHX, COP

The EU plans to phase out the use of the refrigerant R134a for automobile air conditioning systems (AC) beginning with 01.01.2011. After 01.01.2017 the use of R134a in new vehicles will no longer be permitted [1]. Therefore, the OEMs introduced a strategy to implement CO₂ as the future refrigerant for automobile AC [7]. Based on measuring results from three IHX construction samples in a component test bench an interpretation and simulation program was developed which allows comparison of three different constructions leading to COP and process optimized building lengths.

Autoren

Prof. Dr.-Ing. Lutz Mardorf
Dipl.-Ing. Peter Mengert
Dipl.-Ing. Jürgen Erdmann
Fachhochschule Osnabrück, Labor für Angewandte Thermodynamik

Messstellenplan des Komponentenprüfstands

Als Kältemittelverdichter wird ein Schwenk-
ringeverdichter C99-4 von Obrist verwendet [2]. Der CO₂-Komponentenprüfstand befindet sich in einem klimatisierten Laborraum. Die Lufteintritts-

stemperaturen am Gaskühler und Verdampf-
er werden jeweils in einem Kanalsystem mit geregelten Lufterhitzern und variablen Gebläsen eingestellt. Im Kanalsystem des Verdampfers kann die Lufteuzfeucht durch einen Dampfbefeuchter variiert werden. Alle Komponenten des Kältemaschinen-
kreislaufes sind flexibel austauschbar. In diesem Prüfstand wurden die im folgenden Abschnitt beschriebenen IHX-Baumuster messtechnisch untersucht.

Der Mäännder-IHX (Abb. 2, Mitte, oben) ist ein Gegenstrom-Koaixialwärmetauscher mit einem hochdruckbeaufschlagten Innerrohr. An diesem IHX, der mit fünf 180°-Bo-
gen ausgeführt wurde, soll der Einfluss des Druckverlustes auf den CO₂-Kältemaschinenprozess gezeigt werden. Die Temperaturen im Hoch- und Niederdruckteil können abschnittsweise erfasst werden. Der Akku-
mulator (Abb. 2, links) wurde so konzipiert, dass er zum einen die Füllmengendiffere-
z zwischen dem höchsten und dem niedrigs-
ten Betriebspunkt sowie Kältemittelspeises-
te durch Leckagen ausgleichen kann und zum anderen wurde das „Oil Bleed Hole“ so vorgesehen, dass das abgeschiedene Kälte-
mittelmittel zurückgeführt werden kann. Das führt dazu, dass der Eintrittszustand am IHX unterhalb des höchsten Betriebspunk-
tes leicht unter x = 1 liegt. Der Akkumulator ist auf der Niederdrucksseite angeordnet, damit unter allen Betriebsbedingungen flüssi-
ges Kältemittel gespeichert werden kann. Der Profilrohr-IHX (Abb. 2, Mitte, unten) ist ein Gegenstrom-Koaixialwärmetauscher mit radial angeordneten Stegen im Ring-

spalt, der als Niederdrucksseite verwendet wird. Auf der halben Wärmetauscherlänge ist ein 180°-Bogen eingebaut, der zusam-
men mit den Einlaufstutzen den Hauptan-
teil des Druckverlustes bildet. Mehrere Messstellen lassen den Temperaturverlauf auf der Niederdrucksseite erfassen. Als Akku-
mulator wurde auch hier der schon oben beschriebene eingesetzt.

Der Helix-IHX (Abb. 2, rechts) hat einen in dem IHX-Gehäuse integrierten Akkumula-
tor. Der Akkumulatoreintritt ist als Ober-

lauf so konzipiert, dass das Kältemittel im Kreuz-Gegenstrom in einen Ringspalt zwi-

sehen Akkumulatormantel und Gehäuse-
wand strömt, in dem sich die hochdruckbe-
aufschrägte Rohrwellen befindet. Über den Akkumulatormantel kann geringfügig Wär-
me zwischen dem in Strömungsrichtung immer wärmer werdenden Kältemittel (Niederdruck) und der kühleren Kältemittel-

Speichermasse im Akkumulator übertra-

gen werden. Bei dieser Bauart ist der Druck-

verlust auf der Niederdrucksseite im Ver-

gleich mit den anderen Bauarten am ge-

ringsten.

Messegebnisse und Auswerteprogramm

Das von uns entwickelte Auswerteprogramm COSMO ermöglicht eine Online-Datenauswertung und eine grafische Online-Darstellung im log p, h-Diagramm. Die Ent-
thalpie- und Stoffwerteberechnung erfolgt auf der Grundlage von Fluidcal [3]. Neben der Darstellung der Zustandsgrößen wird gleichzeitig eine Leistungsbilanzierung durchgeführt. Unter der Randbedingung einer möglich-

 gleichen Kälteleistung wurden im transkriti-
schen Betrieb (Abb. 3, oben) mit einer Gas-
kühlerausstrittstemperatur von 50°C die drei oben beschriebenen IHX-Baumuster unter-
sucht und die Zustandsgrößen im log p, h-Diagramm aufgetragen. Bei den unter-
suchten IHX-Baumustern liegt in diesem transkritischen Betrieb der Zustandspunkt am Kältemittelaustritt nahe einer theoreti-

 schen Linie für eine COP optimierte Kälte-

leistung [4]. Während bei Mäännder-

IHX der größte Druckverlust auf der Nieder-

drucksseite sichtbar wird, zeigt sich bei dem Helix-IHX eine geringere spezifische Enthal-
piedifferenz, die einen höheren Kältemittel-

massenstrom für die erforderliche Kälteleis-

2 IHX-Baumuster und Akkumulator
3 Vergleich der unterschiedlichen IHX-Baumuster im transkritischen und unterkritischen Betrieb
Simulationsprogramm

Bekanntenmaßen bestehen für die Stoffwerte und insbesondere für die Wärme Kapazität cp am kritischen Punkt eine Anomalie. Da die Niederdruckseite eines IHX für den Wärmeübergang den begrenzenden Faktor bildet, ist die Anomalie bei der Wärme Kapazität mit dem im Simulationsprogramm eingesetzten Differenzverfahren einfach zu handhaben, da sich dieser Vor gang auch im ungünstigsten Fall nur in einem Elementknoten auf der Hochdruckseite ereignen kann, wobei der Prozess auf der Niederdruckseite stets im unterkritischen Bereich abläuft. Der Kurvenverlauf der Wärme Kapazität über der Temperatur lässt von Elementknoten zu Elementknoten eine Linearisierung zu.

Zur Erzielung eines möglichst großen Kältemittelmassenstroms wurde der im Prüfstand vorhandene Verdichter für die Simulation so überetzt, dass die maximale Verdichterdrehzahl bei der maximalen Motor-

Ergebnisse der Simulation

Soll die Anforderung für die erforderliche Kälteleistung von 5 kW bei einer Außentemperatur von 45 °C im Fahrzeugstillstand und beim Frischluftbetrieb erfüllt werden, kann die Länge des Profilrohr-IHX auf 1,2 m begrenzt werden. Wird die maximale äußere Einsatzbedingung nur um 2 K mit entsprechender Kälteleistung abgesenkt, kann die IHX-Länge bei nur geringfügig schlechterem COP um mehr als die Hälfte reduziert werden. Würde man dagegen die maximale äußere Einsatzbedingung des Auslegungsszenarios auf 40 °C mit entsprechend reduzierter Kälteleistung verringern, wäre sogar eine Erfüllung der Anforderung ohne IHX möglich, wobei der COP dann aber um 15 bis 20 Prozent im gesamten Anwendungsbereich fällt. Behält man die Anforderung mit einer Außentemperatur von 45 °C bei (Death Valley Idle Test [7]), kann die erforderliche Kälteleistung von 5 kW bei dem untersuchten Profilrohr-IHX bei einer IHX-Länge von 0,5 m mit maximal 4,5 kW nur knapp erreicht werden und fällt bei völligem Verzicht auf einen IHX auf maximal 3 kW und dem niedrigsten COP-Wert ab. In der Simulationsrechnung wurde für verschiedene Außenlufttemperaturen zwischen 25 und 45 °C eine COP optimierte Länge für die drei untersuchten Baumuster ermittelt. Die COP-Werte des Helix-IHX und des Profilrohr-IHX sind dabei nahezu deckungsgleich. Betrachtet man die höchste Außentemperatur von 45 °C, liegt die COP optimierte Länge beim Helix-IHX bei ca. 13 m, gegen der Profilrohr-IHX eine Länge von ca. 2,3 m aufweist. Der Einfluss auf die Längenänderung bei Reduzierung der Außentemperatur fällt aber beim Helix-IHX stärker aus [Abb. 4].

Bei der maximalen Anforderung im Death Valley Idle Test, Außentemperatur von 45 °C, zeigt sich beim Helix-IHX, dass mit einem Längenzuwachs oberhalb von 5 m der COP nur noch geringfügig steigt, während die Kälteleistung mit Zunahme der Länge stetig ansteigt. Dagegen zeigt sich beim Profilrohr-IHX ein stetiger Anstieg beim COP mit einem Maximum bei einer Länge von 2,3 m, wobei mit einem weiteren Anstieg der Länge darüber hinaus der COP bei weiter steigender Kälteleistung sogar wieder sinkt, was auf das Druckverlustverhalten zurückzuführen ist (Abb. 5). Die geforderte Kälteleistung von 5 kW wird beim Helix-IHX schon ab einer Länge von ca. 3,5 m und beim Profilrohr-IHX von ca. 1,2 m erreicht.

Beim Stillstand eines Fahrzeuges ist die Kältemittelstrom durch die Motorleeraufdrehzahl begrenzt, während im Fahrbetrieb mit zunehmender Motorndrehzahl der Kältemittelstrom steigen kann. Unterscheidet man das Betriebsverhalten des Profilrohr-IHX zwischen Fahr- und Stillstand mit ca. 32 km/h und Stillstand des Fahrzeuges, zeigt sich beim Stillstand des Fahrzeuges, dass unterhalb einer Länge von 1,2 m die Anforderung einer Kälteleistung von 5 kW bei einer Außentemperatur von 45 °C nicht mehr erreicht werden kann. Dagegen könnte man im Fahrbetrieb die Länge des IHX wegen des zur Verfügung stehenden größeren Kältemittelstromaufwands auf ein Minimum verkleinern, allerdings mit sinkendem COP (Abb. 6). Diese Betrachtung gilt für den Frischluftbetrieb der Klimaanlage, wodurch die Luft mit der hohen Außentemperatur auf Fahrzeugzulaufentemperatur abgekühlt wird. Würde man die Klimaanlage im Stillstand des Fahrzeuges immer im Umluft- oder mindestens im Mischbetrieb betreiben, ist eine Reduzierung der IHX-Länge auch unter 1,2 m möglich.

Zusammenfassung

Aus den Messdaten an realen IHX-Baumuster wurden ein Auslegungs- und Simulationsprogramm entwickelt. Dieses Programm ermöglicht die Ermittlung von COP optimierten IHX-Längen bei vorgegebenen Querschnittsgeometrien und die ma-
Zusammenfassend zeigt die Simulation, dass mit einer moderaten Reduzierung der IHX-Länge der COP nur geringfügig abgesenkt wird aber die gestellten Anforderungen an die Kälteleistung gerade noch erreicht werden (Abb. 7). Wird die maximale Anforderung des Death Valley Idle Tests geringfügig gesenkt, z.B. von 45° auf 42,5 °C, kann der Profilrohr-IHX in seiner Länge bei gleicher Kälteleistung merklich reduziert werden.

Literatur